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We have extended the transfer matrix technique to determine the Green ' s  
function for 1-dimensional systems with long range interactions. The formal- 
ism is applied to study the density of states and impurity modes of linear 
chains; calculations are presented for nearest and next nearest neighbors 
interactions. 
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1. Introduction 

In the last few years some authors have discussed the role of impurities in several 
biophysical processes such as electron transfer reactions in photosynthesis, oxida- 
tive phosphorylat ion [1-3] and in the context of enzymatic activity [4]. 

There  has also been a series of recent works concerning the study of localized 
states in a polymer  chain due to internal rotation, bond alternations or the close 
approach of a molecule modifying a site of the chain, which simulates a chemical 
reaction [5-7]. The formation of band gaps and the existence of mechanisms to 
create localized states may play an important  role in the context of chemical 
reactivity, and in catalytic processes. 

Mor ton-Blake  [7] has recently treated this problem, and obtained the electronic 
structure of a per turbed chain, diagonalizing the complete Hamil tonian using 
single band extended Bloch orbitals as a basis set. The number  of orbitals is 
truncated by a numerical convergence criterion. 
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Although adequate for 3d systems, this is not the most convenient approach to 
treat linear chains, for which exact solutions can be found. 

We consider in this work, as in Ref. [7], a one orbital per site model Hamiltonian 
to describe the electronic states of a polymer ( l d  crystal, d -- 'dimensional') with 
long range coupling (but finite) between the orbitals. To our knowledge there 
exists no exact solution to this problem in the literature [7]. We obtain analytic 
expressions for the Green's  function for both "pure"  and "per turbed"  polymers. 
The local density of states, the existence and symmetry of the localized modes 
are discussed. In Sect. 2 we introduce the concept of transfer matrix for long 
range coupling in the case of the pure chain model. Sect. 3 is devoted to the 
"per turbed"  polymer (single impurity chain); in this case the transfer matrix 
approach proves to be very convenient since it does not require explicit knowl- 
edge of the pure system Green's  function, and allows for a complete real space 
treatment of the problem. 

As an example we apply the formalism to the problem of first and second 
neighbors coupling for an interaction which decays as 1/r  3 (dipolar interaction). 
Our calculations indicate that in this case, inclusion of second neighbors coupling 
does not affect significantly the results, and therefore can be neglected in future 
work for simplicity. 

For the sake of definiteness we note that the formalism presented in Ref. [7] 
can be unified by regarding segment perturbation as a modification on the 
self-energy at the "impurity" site and bond compression as a change in the 
corresponding resonance integrals. 

2. Pure Chain 

Let us consider the model Hamiltonian written in the site representation as 
§ 

H = ~ e l a l a t + ~  + (1) V l l , a  1 a l, 
l ll' 

where I specifies the lattice site and at,+ at are creation and destruction operators 
for the electronic orbital at site I. Eq. (1) is restricted to the one-band or one 
orbital per site approximation. 

For the pure chain with coupling range r, the parameters appearing in (1) are: 

e l=O,  l=O,  +1,  +2  . . . .  (2) 

-v jH, i ,  II - l ' [ -<  r (3) 
vlr= O, I I - l ' [ > r .  

Relevant features of the systems, such as density of states, transport properties, 
dynamic response, etc., are directly obtained from the Green's  function [8] 
associated to Eq. (1): 

G ( E )  = (E - H )  -~ ----1(1 + H G )  (4) 
/:z 
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The Green's function matrix elements on the localized orbitals basis set satisfy 
Dyson's equation 

EGii(E) = 3ii + ~ HikGkj (5) 
k 

which in the case of an arbitrary reference site/" = 0 yields: 

EG0,0 = 1 - 2  i t)iai,o (6.a) 
i=1 

EGv,0 = - i v~(Gv+i,o+GIv-~l,0) p < r  (6.b) 
i=1 

EGv, o = - ~ vi(Gp+i.o + Gv-i,o) p >- r. (6.c) 
i=1 

This infinite set of coupled linear equations can be solved exactly; its structure 
suggests a solution of the form: 

Gn,o= 2 xi(T~) ~. (7) 
i = l  

It is easily shown from Eq. (6.c) and (7) that the transfer functions T,. are solutions 
of the following algebraic equation: 

E +  ~ 1 v~[(T)~+(~)~]  = 0  (8) 

Among the 2r solutions for T, there are r associated to the advanced and r to 
the retarded Green's function. We are concerned with the retarded Green's 
function, and therefore the criterion for choosing the appropriate solutions is 
IT(E + ie)l < 1, where e is a small positive number. 

The coefficients xi in Eq. (7) can be easily determined from (6.a), (6.b), and (7), 
once the proper solutions of (8) are obtained. 

As an example, we briefly discuss the density of states 

1 
D(E)  = - - -  Im Go,o (9) 

7/" 

for a pure chain with 1st and 2nd neighbors coupling. In this case Eq. (8) can 
be solved analytically, since it becomes a reciprocal algebraic equation and the 
results are of course equivalent to what is obtained from the dispersion relation. 
The density of states corresponds to a single band, and two different situations 
occur, according to the value of v2/vl =,~ (we assume positive v~ and v2). For 
)t >�88 the band region is E ~ [2v~(-1-A),  2vl(A + 1/8A)]; the density of states 
diverges at the band edges and also at E = 2v~(1-A). For A <�88 the band width 
is 4v~, independent of A, and the lower edge is at E =-2v1(1  +A); the density 
of states is singular at the band edges only. In Fig. 1 we present the density of 
states for A = 1 and ~ (dipolar interaction). 
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Fig. 1. Normalized density of states for a pure chain with first (vl) and second (v2) neighbors coupling. 
Notice that, contrary to the v2 = 0 case, the density of states is not symmetric with respect to the 
center of the band. All singularities are square root type, characteristic of 1 d systems 

3. Single Impurity Chain 

W e  cons ider  a one  d imens iona l  chain wi th  a s ingle impur i ty  at site I = 0. T h e  
H a m i l t o n i a n  (1) ma t r ix  e l emen t s  for  l, l '  r 0 a re  the  same  as those  of Eqs.  (2) 
and  (3); the  p a r a m e t e r s  a ssoc ia ted  to the  impur i ty  a re  def ined  as: 

17,1~ 0 : ~ (10.a) 

-~1,; II'l-r 
v~ I/'l>r. (10.b) 

T h e  G r e e n ' s  funct ion  mat r ix  e l emen t s  a re  o b t a i n e d  f rom Eq.  (8), which yields 
in this case the  fo l lowing set  of coup led  l inear  equa t ions  

(E-8 )Go ,0=  1 - 2  ~ 5,-Gi, o ( l l .a)  
i=1 

EGo.o = -~pGo,o- ~. vi(Gp+i,o+ Gl.-il,o) 
i = l  
i r  

p -< r (11.b) 

EGp,o= - ~ vi(Gp+i,o+Gp-i,o) p > r  ( l l . c )  
i=l 

It  is poss ib le  tha t  the  impur i ty  also affects the  self ene rgy  of its ne ighbors .  The  
inclusion of e ~ 0  for  l =  + 1 ,  + 2  . . . . .  + r  changes  the  1.h.s. of ( l l . b )  into 
( E -  ep)Gp, o, bu t  since (11.c) r ema ins  unchanged ,  the  so lu t ion  is o b t a i n e d  by  the 
same  p r o c e d u r e  desc r ibed  be low.  
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Notice that Eq. (11.c) is the same as (6.c), and therefore the solutions for G,,o 
(n -> 1) are given by an expression similar to (7): 

Gn0 = ~ T, , Yi( i)(n a) n ----- 1 ( 1 2 )  

with T/ representing the same r " re tarded"  solutions of (8). The coefficients yi 
(i = 1 . . . . .  r) together with Go,0 are obtained from the set of r +  1 Eqs. ( l l . a )  
and ( l l .b) .  

As in the previous section, we particularize the discussion to the 1st and 2nd 
neighbors coupling; we call 

/~ = /)2//-)1 

oz = ~ a / v l  (13) 

/3 =/]2/vl .  

The diagonal element of the Green's  function relative to the impurity site is: 

g a h 2 -  h l g 2  
Go,o = (14) 

( E  - 8 ) ( g l h z  - hag2) - a (hh2  - f2h 1) - /3  ( h g l  - fag2) 

where 

f,- = 2(a +/3T/) 

g i = E + ( A + T / + A T ~ )  i = 1 , 2 .  (15) 

hi = T/gl + (1 - ATi) 

The poles of Goo correspond to the energies of the symmetric localized impurity 
states that split off the band for particular values of o~, /3, and 8. In the case 
when the impurity introduces only diagonal disorder, i.e./]1 = Vl and/]e = v2, one  

impurity mode is present above (below) the continuum for 6 > 0 (6 < 0), which 
is characteristic for l d  systems, in which local modes are easily " removed"  from 
the band due to the singularities of the density of states at the band edges. In 
the case of nondiagonal disorder, increasing 15t and/]2 with respect to the host 
values vl and v2 tends to favour the appearance of local modes, even for 8 = 0, 
while for smaller/]1 and/]2, local modes are present only for large enough values 
of 181. This is illustrated in Fig. 2, where we present the energies of the symmetric 
local modes as a function of 8 in the case of diagonal disorder and also for 
a = 0.5 and a = 2, keeping I]2 -~" /-)2 = U 1 / 8 .  

Antisymmetric or p-like modes appear as poles of G1,1: they exist only when 
the impurity affects its neighbors' self energy (e•162 0), which is physically 
expected for an excitation with zero amplitude at the defect site. Although the 
inclusion of this effect is trivial in the proposed formalism, we do not present 
specific calculations for it. 

The wave functions of the modes are obtained from the residues of the poles 
of the matrix elements of G. With respect to the general behavior of the wave 
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Fig. 2. Energies, in units of v~, of the local modes 
as a function of the impurity site perturbation 8 for 
different values of c~ = ~t/vl and v2 = v2 = vl/8. The 
full curve corresponds to a = 1 (diagonal disorder 
only). The dotted curve corresponds to a = 0.5 and 
the dashed curve to a =2.0. The shaded region 
indicates the continuum spectrum 

funct ions  of the local modes,  the fol lowing remarks  apply to any range r of the 

in teract ion:  

(1) There  are at most  two symmetr ic  modes  split t ing off the con t inuum:  one  

above and ano ther  below the band.  
(2) The  relat ive phase at different sites of the wave funct ion  of a symmetr ic  

local mode  is the same as that  of the collective mode  associated with the b a n d  

edge neares t  in energy to the local mode  outside the cluster of ( 2 r +  1) sites 

in teract ing with the impuri ty.  In this cluster, the relat ive phase may change 

according to the values of {13t}t=l,r. 
(3) The  wave funct ions  of local modes  decay exponent ia l ly  into the bulk,  be ing 

more  ex tended  for modes  near  the b a n d  edges. 
(4) The  same conclusions are valid for p- l ike  modes  (when they exist) except, 

of course, for the an t i symmetr ic  character  of the wave funct ions  with respect  to 

the impur i ty  site. 

In  order  to test the adequacy of a mode l  which includes only neares t  ne ighbors  
hoping to describe a system where  the in teract ions  involve other  neighbors  

coupling,  we study the energies of the local modes  for a l inear  chain with one  

Table 1. Energy of the local mode as a function of the impurity site perturbation 6 
for v2 = vl/8 (Eo) compared to the results in the nearest neighbors approximation 
(E~). Energies are given in units of vl. The deviation A = I(Eo-E'o)/Eol 

6/vl +1 +2 +3 +4 +5 

Eo/vl 2.07 2.74 3.56 4.44 5.36 
-2.46 -2.95 -3.68 -4.51 -5.41 

E'o/Vl +2.23 +2.83 +3.60 +4.47 +5.38 

A(%) 7.7 3.3 1.1 0.7 0.4 
9.3 4.1 2.2 0.9 0.6 
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impurity, which is characterized by diagonal disorder only, in two different 
situations. In Table 1 we compare the case of first and second neighbors coupling 
(v2 = Vl/8) with the results for the same system assuming v2 = 0. The continuum 
limits in these cases are [ -2 .25 ,  1.75] and [ -2 ,  2] (in units of Vl), respectively. 
Notice that the deviation from the nearest neighbors case decreases rapidly as 
the local mode energy moves away from the band. This is physically expected 
since the wave functions of the modes far from the continuum in energy are 
concentrated around the impurity site, being less sensitive to long range effects. 

4. Conclusions 

The introduction of the transfer matrix leads to a closed solution for the problem 
of a "per turbed"  linear chain with long range interaction. The results indicate 
that the nearest neighbors model is suitable for the study of local modes even 
in the case where the coupling with other neighbors vl (l > 1) is not negligible 
as compared to v ~, as long as the impurity mode is far enough from the continuum. 

The simplicity of this model suggests its application to study a chemical reaction 
occurring during the collision between a polymer and a reacting molecule. The 
interaction can be simulated by varying the self-energy and resonance integrals 
of a given perturbed site of the polymer. Some of these results are presented in 
the following work. 
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